

SDN @ AmLight: Benefits, Challenges & Future

CUDI 2015 – Reunión de Primavera

April 22th 2015

Puerto Vallarta, Mexico

Jeronimo A. Bezerra <jbezerra@fiu.edu>

Outline

- 1. Who are we?
- 2. How is SDN deployed at AmLight?
- 3. What are the benefits identified for your institution?
- 4. What were the barriers found in the use of SDN in your institution?
- 5. Future

Who we are

AMPATH:

- GLIF GOLE and Academic IXP in Miami
- Interconnects almost all Latin America RENs to other NRENs in the world

SouthernLight:

- GLIF GOLE and Academic IXP in Sao Paulo
- Interconnects all Brazilian RENs and RedCLARA to AmLight

AmLight:

 A set of trans-continental high-bandwidth links connecting SounthernLight, REUNA and AURA/Chile to AMPATH

Partners: Florida International University/FIU, NSF, ANSP, RNP, RedCLARA, REUNA and AURA

Who we are (2)

A set of 4 x 10G links connecting South America to AMPATH

- Academic Layer 2 Ring (Miami-Sao Paulo-Santiago)
- MPLS Ring (Miami-Fortaleza-Rio-Sao Paulo)

 July 2015: 100G link between Sao Paulo and Miami (OpenWave)

Connections:

- 13 RENs
- > 1000 Universities and Research Centers

How is SDN deployed at AmLight?

- Devices:
 - Brocade MLXe
 - Brocade XMR
 - Brocade CES
 - Version 5.6d
- Network Virtualization:
 - Internet2's FlowSpace Firewall
- SDN Orchestrator:
 - Internet2's OESS
- Final Approach:
 - Openflow 1.0
 - Controllers installed in Miami
 - OSCARS and NSI support
 - Non-Academic traffic remains "legacy/protected"

Northbound: Users' APIs

Southbound API: OpenFlow 1.0

Physical Layer

What are the benefits identified for AmLight?

Before the SDN deployment:

Complex provisioning process:

- Some circuits involve up to seven different networks
 - High level of coordination required with diverse network teams
- Multiple technologies involved
 - From Layer 1 to MPLS
- Some circuits took weeks or even months to be provisioned

Network Programmability:

- The lack of support for network programmability compromises networkaware demos and applications
- Researchers could only view the network status (SNMP)

What are the benefits identified for AmLight? (2)

A. Improving operations efficiency

	Average time to		Avg. number of e-	
	provision a new circuit		mails exchanged	
Domains involved in the path	before SDN	after SDN	before SDN	after SDN
RNP, ANSP, RedCLARA, AmLight, Internet2, ESnet	5 days	< 5 minutes	10	0
Other domains using OSCARS or NSI support	12 days	< 5 minutes	65	0
Other domains not using OSCARS or NSI support, < 3 networks in the path	5 days	*	10	*
Other domains not using OSCARS or NSI support, >3 networks in the path	12 days	*	65	*
With domains in other continents not using OSCARS or NSI support	45 days	*	100	*

What are the benefits identified for AmLight? (3)

B. Introducing network programmability

	Network Access and Programmability		
	Before SDN	After SDN	
Network View	SNMP	SNMP and Openflow	
Provisioning Defined by			
the User	-	Full Openflow access through a dedicated slice	
Multipath experiments	Static paths offered		
Flow controlled hop-by-			
hop	-		

Network programmability is the main achievement of this project:

• Network-aware applications will have AmLight as a real platform for innovation

What were the barriers found in the use of SDN?

- Some legacy protocols and old switching line cards could increase the complexity
 - LACP, Counters, Ethertypes
- Lack of the Hybrid port feature can derail the SDN deployment
- Out-of-band/Control Plane network could be challenging
- "Having a testing environment with the same devices is mandatory"
- Convergence methodology has to be improved
 - Specially in long-haul links

Future

Migrate to Openflow 1.3

- Add new applications
 - QoS support
 - IP routing/SDN-IP

Create a SDX – Software-defined Exchange

SDN @ AmLight: Benefits, Challenges & Future

CUDI 2015 – Reunión de Primavera

April 22th 2015

Puerto Vallarta, Mexico

Jeronimo A. Bezerra <jbezerra@fiu.edu>