

The creation of a Tier-1 Data Center for the ALICE experiment in the UNAM

Lukas Nellen ICN-UNAM lukas@nucleares.unam.mx

3rd BigData BigNetworks Conference — Puerto Vallarta — April 23, 2015

Who Am I?

ALICE

Mexican coordinator for ALICE data centre project

Pierre Auger Observatory

- Analysis software
- Data management
- Ollaboration governance
- Oata analysis
- HAWC observatory
 - Data centre @ ICN
 - Site computing and networking
 - Ollaboration governance
 - Data analysis
- Output in the UNAM Super Computing Committee

ALICE @ LHC Detector Computing

Exploration of a new energy frontier in p-p and Pb-Pb collisions

CERN Prévessin

ALLA

ALICE

Exploration of a new energy frontier in p-p and Pb-Pb collisions

CERN Prévessin

LICE

CMS

Explorat

General purpose, p-p, heavy ions New physics: Higgs boson, SuperSymmetry

HCh

in p-p and Pb-Pb collisions

p-p B-Physics, CP Violation (matter-antimatter symmetry)

CMS

Explorat

LHCh

General purpose, p-p, heavy ions New physics: Higgs boson, SuperSymmetry

in p-p and Pb-Pb collisions

p-p B-Physics, CP Violation (matter-antimatter symmetry)

CMS

Explorat

LHCh

General purpose, p-p, heavy ions New physics: Higgs boson, SuperSymmetry

in p-p and Pb-Pb collisions

LHC: 27 km circumference p-p, heavy ions, p-A 4TeV Center of mass energy Bunch collision rate 40MHz CERN: ~10000 scientists

Heavy ions, pp Quark-Gluon Plasma (state of matter of early universe)

ALICE

ALICE

The data challenge in HEP

ALICE data centres: Tier structure

• Tier 0

- CERN and Wigner Research Center (Hungary)
- First copy data
- First pass reconstruction
- Oata distribution to Tier 1 centers
- Tier 1
 - I3 centres worldwide, 7 for ALICE, none in the Americas
 - Data copy
 - Reconstruction and simulation
 - Oata distribution to Tier 2 centers
- Tier 2
 - Institutions, Universities: ~160 centers

WLCG tier hierarchy

The ALICE Grid sites

The ALICE Grid sites

ALICE computing @ UNAM

Pre-History: ALICE GRID node @ ICN-UNAM

- Started in 2006 with 32 Xeon cores, 32 bit, 2.4GHz, 1.5GB RAM / core
 - upgraded to 64 bit nodes in 2008
- 1TB storage element
- EELA resource centre

ALICE VO-box

- Suffer from high network latency
- Mixed routing: commodity and CUDI net
- Low bandwidth
- Work on improving networking
 - routing
 - TCP stack tuning

Networking improvements

- ALICE computing has been an important driver behind improvements of WAN
- Second E3 to CUDI in 2008 duplicates UNAM bandwidth to 60Mbit/s
- New fibre ICN-DGSCA to reach 1Gbit/s and beyond
- Operated HPC network segment @ICN
- Cluster expanded in 2010
- UNAM acquires 1Gb/s to San Antonio
 - Fully operational in April 2013
 - Main users now: ALICE, HAWC

The idea for a Tier-1 data centre

• October 2010: ALICE contacts the UNAM

- Recognise previous experience
- Looking to expand computing resources
- Opportunity for the UNAM to acquire know-how
- Ianuary 2011: Workshop Grid Computer Center of the Americas defines initial goals
 - 1000 cores
 - 1PB storage

• Start as a Tier-2 centre, then move up to Tier-1

Hardware purchases

- Original plan: bundle purchase with renewal of UNAM supercomputing (Miztli)
- Optimising cost and resources: purchase dedicated equipment
 - xrootd/EOS storage
 - Ethernet only
- Our Search Struct St
 - Gain experience
 - Start evaluation of network

The Canek cluster

- Hardware arrived in March 2014
- 512 cores (1024 threads) in 32 nodes
 - O 2 Intel Xeon(R) CPU E5-2650 v2 @ 2.60GHz
 - 128GB RAM, 2 × 1TB local disk
- 450TB storage in 5 servers
 - O 2 Intel(R) Xeon(R) CPU X5650 @ 2.67GHz
 - 12 cores / 24 threads, 24GB RAM
 - 90TB per enclosure
 - RAID 6
- I0Gbps Ethernet
 - operational internally
 - Iceady to connect cluster at 10Gbps to the world

Current status: Tier 2

Configured as node for ALICE

- OUNAM-CERN MOU for Tier-2 data centre signed in November 2014
 - Presence of CERN's scientific director in the UNAM
- Regular operations

ALICE computing in North America

ALICE computing in North America

ALICE computing in North America

Hardware expansion towards high-end Tier-2

Plans for 2015

Expand storage

- Ourrently about 450TB available
- Cross the 1PB threshold in 2015
- Will need continuous expansion in the future
 - LHC will produce data for 20 years

Ouble processing power

- Currently 512 Hyper-threaded cores 1024 job slots
- 4900 HEP-SPEC 06
 4900 HEP-SPEC 06
 - In the center of the playing field
 - room to move up

The Future: ALICE UNAM data centre

RUN 2 detector upgrades

- TPC, TRD readout electronics consolidation
- +5 TRD modules
 - full azimuthal coverage
- +1 PHOS calorimeter module
- + DCAL calorimeter

- Double event rate => increased capacity of HLT system and DAQ
 - Rate up to 8GB/sec to T0

- Expecting increased event size
 - 25% larger raw event size due to the additional detectors
 - Higher track multiplicity with increased beam energy and event pileup
- Concentrated effort to improve performance of ALICE reconstruction software
 - Improved TPC-TRD alignment
 - TRD points used in track fit in order to improve momentum resolution for high $p_{\rm T}\, tracks$
 - Streamlined calibration procedure
 - Reduced memory requirements during reconstruction and calibration (~500Mb, the resident memory is below 1.6GB and the virtual - below 2.4 GB)

Run 3: Paradigm shift

- Now: reducing the event rate from 40 MHz to ~ 1 kHz
 - Select the most interesting particle interactions
 - Reduce the data volume to a manageable size
- After 2018:
 - Higher interaction rate
 - \Rightarrow More violent collisions \rightarrow More particles \rightarrow More data (1 TB/s)
 - ◆Physics topics require measurements characterized by very small signal/ background ratio → large statistics
 - ◆Large background → traditional triggering or filtering techniques very inefficient for most physics channels
 - Read out all particle interactions (PbPb) at the anticipated interaction rate of 50 kHz
- Data rate increase: x100

Why insist on a Tier-1 data centre

Needed

Challenging

Possible

The need for a new Tier 1 for ALICE

Second copy data storage

- Tier-1 centres responsible for safe-keeping of raw data
- More space needed to hold backup copies
- No Tier-1 data center for ALICE in the Americas
 - Support regional distribution
- Additional processing power for the collaboration
 - Output Collaborators are expected to contribute
 - Will be the Mexican contribution in computing

Challenges

• New step in advanced computing in Mexico

- Oata intense science
- Intense network usage

• Motor to drive development of infrastructure

- Network
- Data centres
- Attract new users
- Provide high-level, reliable service
 - High uptime
 - Short response time to problems
 - Onder international scrutiny

Project possible

- OGTIC-UNAM experience in providing advanced computing services
- ICN-UNAM experience in providing grid services
- Have trained personnel
- Network infrastructure improving
 10Gbps academic networking coming to Mexico
- Output for the project

Backup system

Have to back up data

- Image: prepared for multi-PB scale
- Traditionally: Tape
 - Additional technology
 - Not presently in use at the UNAM

New possibility: Disk

- Hierarchical storage
- Build on local knowledge
- We could become pioneers of new technology
- Evaluation options
 Looking for funding

Operational challenges

• Need short response time

- More personnel needed
 - Have trained experts
 - Lack operators for routine monitoring and first level attention to problems

• High uptime expected

- Stability
- Spares
- Maintenance
- Stricter than for most (all?) academic computing centers in Mexico

Budget

Occasionally asked questions

• Why Tier-1 in Mexico

- Can be done: Proof of Mexico's technological abilities.
- Each country contributes to the computing power of the collaboration, it is one of the contributions expected from a mature country.
- Why not use commercial computing, e.g., cloud services?
 - Rule of thumb: running your own installation more economic if you manage to get more than ~75% use.
 - Local installation provides opportunity to train new experts in computing.

Local synergy / spin-off

HAWC

- primary data center at ICN-UNAM
- ~700TB on disk, preparing to reach 2PB installed space

Oark Energy Spectroscopic Instrument

- Mexican collaborators staring
- Approached us for support

Pierre Auger Observatory Grid node, supporting production

Conclusions

Successfully operating a Tier-2 data centre for ALICE

- Developing a full Tier-1 data centre is
 - Challenging
 - possible

• Front line projects provide stimulus for development

- Benefit from experience in High Energy Physics to handle
 Big Data
- Expand infrastructure
- Attract and support new users and communities
 Attract and support new users
 Attract and support new users
 Attract and support
 Attract and support
 Attract and support
 Attract
 At
- Ochallenge for Network Infrastructure

Output in the second second